Open Published Online: 22 November 2022
AIP Conference Proceedings 2650, 07154 (2022); https://doi.org/10.1063/07154
The article presents the research results of the carbon ferrochrome dust processing from Aktobe Ferroalloy Plant (Branch of TNC Kazchrome JSC). The research was carried out by electrofusion of granular dusts in the presence of steel shavings and coke using a one-phase single-electrode arc furnace. The electrofusion was carried out in accordance with the second-order rototable planning matrix (Box-Hunter plan). The effect of the amount of steel shavings, coke and the electrofusion duration on the production of ferroalloy from carbon ferrochrome dusts was determined. It was established that the formation of ferrochrome silicon FeCrSi22 occurs in the presence of 24.2-29.8% coke and 4.0-5.1% steel shavings; the alloy contains 20-20.2% silicon, 55-56.6% chromium; the degree of silicon extraction is 52.1-53.3% and of chromium 98.6-99.3%. The formation of ferrochrome silicon FeCrSi23 occurs in the presence of 4-11.7% steel shavings and 20-36% coke; the silicon extraction into the alloy is 51.2-61.0%, and of chromium 97.7-99.0%. The ferroalloy contains 45-57.2% Si and 18.0-22.4% Cr.
  1. 1. I.D. Kashcheev, V.I. Zhuchkov and O.V. Zayakin, Russian Internet Journal of Industrial Engineering 7(3), 40–45 (2019). DOI: https://doi.org/10.24892/RIJIE/20190307, Google ScholarCrossref
  2. 2. P.P. Lazarevskiy, R.A. Gizatulin, Yu.E. Romanenko, D.V. Valuev, A.V. Valueva and A. Serikbol, «Extraction of Chromium from Carbon Ferrochromium Residual Wastes”, in IOP Conf. Series: Materials Science and Engineering 91, (2015). DOI: https://doi.org/10.1088/1757-899X/91/1/012038. Google ScholarCrossref
  3. 3. P.P. Lazarevsky, Yu.E. Romanenko and M.N. Lazarevskaya, Processing of technogenic wastes from the production of carbon ferrochrome in order to obtain chrome CWC, Steel 11, 63–65 (2015). Google Scholar
  4. 4. I.D. Kascheev, V.I. Zhuchkov and O.V. Zayakin, «Forming and Utilizing Ferrochromium Production Waste” in Materials Science Forum 989, 492–497 (2020) https://doi.org/10.4028/www.scientific.net/MSF.989.492, Google ScholarCrossref
  5. 5. D.D. Izbembetov, N.M. Amangeldiev and N.S. Zuparov, Theory and technology of metallurgical production 2 (17), 56–60 (2015). Google Scholar
  6. 6. I.D. Kascheev, N.S. Zuparov, N.E. Ismailov, N.M. Amangeldiev and M.A. Baidimirov, Theory and technology of metallurgical production 1(18), 63–66 (2016). Google Scholar
  7. 7. P.K. Acharya and S.K. Patro, Waste Management & Research 34, 764–774 (2016). DOI: https://doi.org/10.1177/0734242x16654751, Google ScholarCrossref
  8. 8. P.K. Acharya and S.K. Patro, Construction and Building Materials 94, 448–457 (2015). DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.081, Google ScholarCrossref
  9. 9. A. Kaliakparov, K. Bilyalov, D. Dzheksembaev and D. Aigumusova, «Recycling of current production at Aksus Ferroalloy Plant” in Science and innovation-2020, Conference Proceedings, www.rusnauka.com/pdf/284455.pdf. Google Scholar
  10. 10. A. Kaliakparov, A. Suslov, K. Bilyalov and M. Kulandin, Ecology and Industry of Russia 19(2), 4–7 (2015). https://doi.org/10.18412/1816-0395-2015-2-4-7. Google ScholarCrossref
  11. 11. A.M. Kasimov, A.I. Rovenskiy and B.N. Maksimov, Dust and gas emissions during the production of the main types of ferroalloys (bMetallurgy, Moscow, 1988), 110 p, Google Scholar
  12. 12. A.K. Zhunusov, N.K. Kulumbayev, Zh.O. Nurmaganbetov and L.B. Tolymbekova, Science and technology of Kazakhstan 3, 39–44 (2007). Google Scholar
  13. 13. G.V. Horoshun and S.N. Fedoseev, «Processing of secondary raw materials and application in metallurgy» in Ecology and safety in the technosphere: modern problems and solutions, All-Russian scientific and practical conference (Tomsk Polytechnic University, Tomsk, Russia, 2016), pp.66–69. Google Scholar
  14. 14. V.P. Zayko, V.N. Karnoukhov, A.M. Sunchakov, S.M. Dorzhiev, V.I. Gerner, V.V. Obrezkov, I.V. Malkov and I.M. Magidson, Patent No. RU2083693C1 (10 July 1997). Google Scholar
  15. 15. F.K. Shadiev, M.F. Shadiev and D.D. Izbembetov, Patent No. EA031791B1 (28 February 2019). Google Scholar
  16. 16. N.A. Kozyrev, R.E. Kryukov, A.A. Umansky, A.A. Usoltsev and P.D. Sokolov, Ferrous metallurgy 1(1417), 77–87 (2018). Google Scholar
  17. 17. N.A. Kozyrev, A.A. Usoltsev, R.E. Kryukov, A.N. Prudnikov and D.E. Belov, «Study of the properties of flux- cored wire based on dust from gas cleaning of ferrochrome” in Welding in Russia – 2019: current state and prospects, Welding in Russia conference proceedings, (Tomsk, Russia, 2019), pp.151–152. Google Scholar
  18. 18. V.M. Shevko, Y. Afimin, G.E. Karatayeva, A.D. Badikova and T. Ibrayev, Metallurgica Slovaca 27, 23–27 (2021). DOI: https://doi.org/10.36547/ams.27.1.745, Google ScholarCrossref
  19. 19. S.L. Akhnazarova and V.V. Kafarov. Experiment optimization methods in the chemical industry (Higher School, Moscow, 1985), 327 p. Google Scholar
  20. 20. V.F. Ochkov, Mathcad 14 for students, engineers and designers (BHV-Petersburg, Saint Petersburg, 2009), 512 p. Google Scholar
  21. 21. Ferrosilicochromium. Technical requirements and terms of delivery, State standard 11861-91 (Publishing house of standards, Moscow, 2002), 7 p. Google Scholar
  22. 22. E.O. Dzhakipbekov, S.A. Sakibayeva, N.O. Dzhakipbekova, G.F. Sagitova, K.A. Bekzhigitova and Zh.A. Shingisbayeva, Rasayan Journal of Chemistry 14(1), 1–8 (2021), DOI: https://doi.org/10.31788/RJC.2021.1415824. Google ScholarCrossref
  1. © 2022 Author(s). Published by AIP Publishing.